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Abstract We examine three case studies during the Deep Convective Clouds and Chemistry (DC3) field
experiment when storm inflow and outflow air were sampled for aerosol subsaturated hygroscopicity and
the real part of refractive index (n) with a Differential Aerosol Sizing and Hygroscopicity Probe (DASH-SP) on
the NASA DC-8. Relative to inflow aerosol particles, outflow particles were more hygroscopic (by 0.03
based on the estimated κ parameter) in one of the three storms examined. Two of three “control” flights with
no storm convection reveal higher κ values, albeit by only 0.02, at high altitude (> 8 km) versus < 4 km.
Entrainment modeling shows that measured κ values in the outflow of the three storm flights are higher
than predicted values (by 0.03–0.11) based on knowledge of κ values from the inflow and clear air adjacent to
the storms. This suggests that other process(es) contributed to hygroscopicity enhancements such as
secondary aerosol formation via aqueous-phase chemistry. Values of n were higher in the outflow of two of
the three storm flights, reaching as high as 1.54. More statistically significant differences were observed in
control flights (no storms) where n decreased from 1.50–1.52 (< 4 km) to 1.49–1.50 (> 8 km). Chemical
data show that enhanced hygroscopicity was coincident with lower organic mass fractions, higher sulfate
mass fractions, and higher O:C ratios of organic aerosol. Refractive index did not correlate as well with
available chemical data. Deep convection is shown to alter aerosol radiative properties, which has
implications for aerosol effects on climate.

1. Introduction

Atmospheric aerosol particles and their interactions with radiation, water vapor, and clouds represent the
largest source of uncertainty in current estimates of the total anthropogenic radiative forcing budget
[Intergovernmental Panel on Climate Change, 2013]. This is partly owing to the short residence time and spatial
heterogeneity of particles in the atmosphere, in addition to uncertainty in their properties as a function of age
in the atmosphere. Knowledge of vertically resolved aerosol properties in the atmosphere is particularly
important for calculations of radiative transfer and cloud processes, in addition to interpretation and use
of remote sensing data. One such process that can alter the abundance and properties of aerosol as a func-
tion of altitude is convective transport of aerosol particles and gases from the planetary boundary layer (PBL)
to the upper troposphere (UT) [e.g., Pickering et al., 1990; Jaeglé et al., 1997; Huntrieser et al., 2002, 2011; Ridley
et al., 2004; Singh et al., 2007; Ancellet et al., 2009; Avery et al., 2010; Barret et al., 2010]. Deep convective storms
can redistribute aerosols (and gases), process them via aqueous-phase chemistry, and remove them by wet
scavenging processes [e.g., Barth et al., 2007, 2016; Chakraborty et al., 2015; Yang et al., 2015; Bela et al., 2016;
Corr et al., 2016; Fried et al., 2016].

Measurements of aerosol particles around deep convective storms are challenging, and consequently,
uncertainties exist as to how aerosol properties vary between inflow and outflow areas. A complication
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in understanding these changes is that entrainment of cloud-free air into the storm influences the
convected particles [e.g., Pickering et al., 1992]. One study has shown that the passage of a mesoscale
convective system (MCS) resulted in reduced aerosol concentration, enhanced contributions from inor-
ganic constituents (i.e., sulfate, nitrate, and chloride) to total aerosol mass concentrations, and enhanced
cloud condensation nuclei (CCN) activity, as quantified by the ratio of CCN to total condensation nuclei
(CN) number concentration [Crumeyrolle et al., 2008]. They concluded with support from model simula-
tions that the storm potentially helped add a soluble coating around dust particles that increased their
hygroscopicity. Other works have also shown that dust can become coated with more hygroscopic con-
stituents such as sulfate as a result of cloud processing [Levin et al., 1996; Wurzler et al., 2000; Desboeufs
et al., 2001; Yin et al., 2002; Sullivan et al., 2007; Sorooshian et al., 2013]. The results of Crumeyrolle et al.
[2008] were based on airborne measurements before and after the passage of a single MCS, and their
measurement of hygroscopicity (CCN:CN) was sensitive to the aerosol size distribution [e.g., Wonaschütz
et al., 2013; Crosbie et al., 2015]. Therefore, additional measurements of aerosol properties before and
after convective processing are needed, including measurements that are insensitive to the shape of
the size distribution.

The Deep Convective Cloud and Chemistry (DC3) field experiment in 2012 provided a unique opportunity to
obtain in situ data related to aerosol properties in the inflow and outflow of convective storms [Barth et al.,
2015]. The focus of this work is on two radiatively important properties of aerosol, including hygroscopicity
and the real part of the dry particle refractive index. The focus of the hygroscopicity discussion centers
around a relative humidity (RH)-independent single parameter value (kappa, κ) often used in models
[Petters and Kreidenweis, 2007]. As will be further discussed, this parameter relates the aerosol hygroscopic
growth factor to RH. The objective of the data analysis is to report on the following: (i) the vertical structure
of κ and n based on data for all of DC3 and specifically for the three storm regions probed; (ii) comparison of
inflow and outflow data during three case flights with convective storms in contrast to flights with no storms
present; (iii) model predictions of aerosol hygroscopicity in the outflow of the three storm case studies when
including the effect of entrainment; and (iv) a discussion of factors leading to differences in measured para-
meters in the PBL versus UT.

2. Experimental Methods
2.1. DC3 Field Campaign

The Deep Convective Clouds and Chemistry (DC3) study was conducted during May and June 2012 using
multiple platforms based out of Salina, Kansas. The objective was to study the chemical and transport
processes associated with deep convection in midlatitude, continental, deep convective clouds [Barth
et al., 2015]. Measurements targeted three regions for sampling thunderstorms: northeastern Colorado,
Oklahoma-Texas, and northern Alabama. Three aircraft (i.e., NASA DC-8, NSF/NCAR Gulfstream V (GV), and
DLR Falcon 20) flew coordinated flight patterns, sampling inflow and outflow regions of storms to quantify
atmospheric composition in and around the storm cells. Ground-based observations monitored storm devel-
opment, physical structure, and lightning location. The instrumental suite aboard the DC-8, the platform of
interest in this study, included instruments to characterize parameters associated with meteorology, radia-
tion, clouds, gases, and aerosol particles.

2.2. DC-8 Measurements
2.2.1. DASH-SP
A key instrument in this study is the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe
(DASH-SP), which measures size-resolved hygroscopic growth factors (GF = ratio of humidified diameter to
dry diameter) and the real part of the dry particle refractive index (n) [Sorooshian et al., 2008a]. Instrument
operating details, data processing procedures, and examples of its field deployment are presented elsewhere
[Sorooshian et al., 2008a, 2008b; Hersey et al., 2009, 2011, 2013; Shingler et al., 2016a], but a brief description is
provided here.

On the DC-8, the ambient aerosol stream sampled by the DASH-SP first entered through an isokinetically con-
trolled inlet that efficiently collects and transmits particles smaller than 4 μm diameter [McNaughton et al.,
2007]. The air sample is next passed through a nafion dryer (Perma-Pure FC-125-240-10PP) before entering
a differential mobility analyzer (DMA) to generate a monodisperse aerosol stream at a chosen dry particle
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diameter. That stream is subsequently split to separate dry and humidified streams feeding optical particle
counters (OPCs) that are used to quantify the final humidified diameter. The OPCs measure light scattering
intensity using diode lasers at a wavelength of 532 nm (World Star Technologies, Model TECGL-30). The
OPC in the dry aerosol stream is used to determine n, while the other OPC measures light scattering for par-
ticles that have passed through a diffusion-based humidifier. The residence time of sampled aerosol is ~3 s
from the entrance of the DASH-SP to the humidifier, followed by another ~4 s from the humidifier to the
OPCs. An algorithm is used to quantify GF using knowledge of dry particle diameter, n, and the humidified
OPC light scattering distribution [Shingler et al., 2016a].

During DC3, the DASH-SP humidified RH was set to values typically between 70 and 95% with dry measure-
ments below 15%. The dry diameter range was between 180 and 400 nm. Humidity within the DASH-SP
humidified channel was controlled within 1.5% RH, and the uncertainty in GF and n measurements is less
than 3% and 0.01, respectively [Sorooshian et al., 2008a; Shingler et al., 2016a]. The time resolution of
DASH-SP measurements was on the order of seconds in the PBL due to high particle concentrations in the
dry diameter range that the DASH-SP can measure. However, in the UT where anvil outflows were present,
measurements required a longer amount of time to gather sufficient statistics to robustly derive GF and n
as opposed to dividing the data into more data points with less statistical robustness. The average (± stan-
dard deviation) time to obtain a single GF and n value for inflow and outflow sampling was 29 ± 5 s and
54 ± 41 s, respectively. Furthermore, for other flights discussed below without storm convection, the times
to get a single GF and n data value for low (< 4 km) and high altitude (> 8 km) data reported were
13 ± 11 s and 51 ± 48 s, respectively.

In order to intercompare GF data at the various humidified RHs meaningfully and to still have sufficient sta-
tistics for the subsequent analyses presented, GFs were converted to a RH-independent single parameter
value (kappa, κ) often used in models [Petters and Kreidenweis, 2007]. In the subsaturated regime, κ is directly
related to GF using the approximation shown in equation (1) (where RH corresponds to the mole fraction-
based water activity in a liquid particle phase in equilibrium with the gas phase).

GF½ �3 ¼ 1þ κ
RH

100%

1� RH
100%

 !
(1)

2.2.2. Other Instrumentation
The Meteorological Measurement System (MMS) aboard the DC-8 provided measurements of ambient
temperature, pressure, horizontal winds, and relative humidity. Ice water content (IWC) data were obtained
by a SPEC 2D-S (Stereo) Optical Array Cloud Particle Imaging Probe [Lawson et al., 2006] and were used to
classify air as being cloud-free in outflow regions when <0.001 g kg�1. Nonmethane hydrocarbons were
measured using the whole air sampler (WAS) coupled offline to gas chromatography [Colman et al., 2001;
Simpson et al., 2010]. Carbon monoxide (CO) was measured with a differential absorption mid-IR diode
laser spectrometer [Sachse et al., 1991]. Submicrometer aerosol composition, specifically including nonre-
fractory components, was measured with a High Resolution Aerosol Mass Spectrometer (HR-AMS) [DeCarlo
et al., 2006; Dunlea et al., 2009]. Submicrometer black carbon (BC) mass concentration was measured with
a Humidified-Dual Single-Particle Soot Photometer (HD-SP2) [Schwarz et al., 2015]. To complement the
DASH-SP hygroscopicity data, the ratio of humidified scattering coefficient to dry scattering coefficient
at 550 nm, f(RH), for bulk aerosol was measured with the Langley Aerosol Research Group Experiment
(LARGE) tandem humidified nephelometers (TSI Inc., Model 3563) [Ziemba et al., 2013]. The f(RH) data were
obtained at dry (RH 20%) and humidified (RH 80%) scattering channel settings, and with a reported uncer-
tainty of ±0.05.

2.3. Radar Measurements

Data are used from the Weather Surveillance Radar-1988 Doppler (WSR-88D) System [Crum and Alberty,
1993], a product of the Next Generation Weather Radar (NEXRAD) program, to examine storm structure
and estimate the distance between the DC-8 and the nearest storm core [Barth et al., 2016; Fried et al.,
2016]. Three-dimensional composites were produced from multiple S band (10 cm wavelength) radars
following the methodology described in Homeyer [2014] and Homeyer and Kumjian [2015].
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2.4. Inflow/Outflow Sampling Determination

Using methods outlined in other DC3 studies [Barth et al., 2016; Fried et al., 2016], inflow and outflow
sample periods were identified using aircraft flight tracks, weather radar ensembles, radiosondes, wind
direction, storm cell propagation, speed of aircraft and of storm movement, and trace gas and aerosol
measurements to determine stability during aircraft flight legs. Three case flights are examined with storm
inflow and outflow data (25 May 2012, 16 June 2012, and 22 June 2012) for which a sufficiently high par-
ticle number concentration was observed in the DASH-SP size range above 10 km where anvil outflows
typically were sampled; other inflow/outflow DC3 flights discussed in other studies [e.g., Barth et al.,
2016; Bela et al., 2016; Corr et al., 2016; Fried et al., 2016] are not considered here owing to insufficient
DASH-SP statistics available in outflow regions of those flights. The first two storms were in Oklahoma,
and the last one was in the vicinity of northeast Colorado and southwest Nebraska (Figure 1). All three
storm cases represent severe convection with high convective available potential energy (CAPE) with
the following values: 25 May = 3650 J kg�1, 16 June = 3049 J kg�1, and 22 June = 2563 J kg�1. There
was also substantial vertical wind shear between 0 and 6 km on these days: 25 May = 13.4 m s�1, 16
June = 15.9 m s�1, and 22 June = 24.2 m s�1. These storm environment parameters were calculated using
sounding data with CAPE determined using the mixed layer (i.e., between surface and 100 hPa above
surface) mean temperature.

Figure 1. Flight tracks represented by circular markers colored by κ during the periods of time when the DC-8 was sampling inflow and outflow aerosol in the
following three storm case flights initiated on the following days: (a) 25 May 2012, (b) 16 June 2012, and (c) 22 June 2012. (Note that the times of the images
are near the end of the flights that extended into the following day based on UTC time.) The maximum column reflectivity from the NEXRAD radars is shown with
wind vectors marking the time period of inflow and outflow sampling.
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Measurements of inflow and outflow regions of targeted storms were obtained by a precise flight pattern
described in other work [Barth et al., 2015, 2016; Fried et al., 2016]. Such flight tracks began with sampling
boundary layer inflow composition at a number of altitudes crossing in front of the storm in the PBL and just
above the PBL height, then spiraling to the convective anvil outflow region with multiple subsequent flight
legs at high altitude. In alignment with methods presented by Barth et al. [2016] and Fried et al. [2016], mea-
surements taken closest to the storm core top are presented here to minimize biases due to dilution and sub-
sequent out-of-cloud aerosol processing; however, this was typically dozens of kilometers downwind of the
storm core top to avoid aircraft damage. Regions of inflow and outflow were determined by analyzing flight
legs where horizontal winds indicated air flowing into storm within the PBL for inflow and air flowing from
the storm core in the anvil for outflow (Figure 1) [Barth et al., 2016; Fried et al., 2016]. Inflow and outflow times
(UTC) of the three case flights are as follows (inflow/outflow): 25 May = 23:53–24:00/25:20–25:34; 16 June:
24:21–24:28/26:05–26:09; and 22 June: 23:10–23:20/25:25–25:29. Based on 48 h back trajectory data from
the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [Stein et al., 2015; Rolph, 2016],
the air mass source region impacting the inflow on the three storm days was from the south (Texas,
Mexico, and the Gulf Coast).

There is often concern with aerosol data contamination associated with ice shatter on inlets [e.g., Murphy
et al., 2004; Heymsfield, 2007; Jensen et al., 2009; Froyd et al., 2010; Lawson, 2011; Cziczo and Froyd, 2014].
As noted by Corr et al. [2016] for the DC3 campaign, the inlet used for DASH-SP measurements, which was
common to other measurements too, did not exhibit a clear dependence of aerosol parameters (i.e., volume
concentration and calcium mass concentration) on either IWC or number concentration of large ice particles
(diameter> 50 μm), as would be the case in the presence of ice shattering. Owing to the difficulty of the out-
flow measurements, two of the three storm cases (16 June and 22 June) where DASH-SP data could be
obtained coincided with IWC exceeding 0.001 g kg�1. IWC data were not available on 25 May; however, for-
ward camera video images suggested that there may have been some cloud affecting at least a subset of the
outflow data points. For each of the three storm flights, no relationship was observed in the vicinity of the
anvil outflow between either IWC or the forward camera cloud indicator with either κ or n. HR-AMS composi-
tion data were also not affected by IWC inlet artifacts.

3. Results
3.1. Control Flights and Cumulative Data

To put the storm flight data into context, first we report vertical profiles of κ and n based on cumulative DC3
data and for data in the three main storm regions studied (northeastern Colorado, Oklahoma/Texas, and
northern Alabama) (Figure 2). In addition, data are examined from three “control” case flights with both
low- and high-altitude data during periods when the DASH-SP did not sample inflow and outflow air from
convective storms (Table 1). The control flight data are from areas in Alabama (21 May), Illinois (26 May),
and Illinois and Tennessee (30 May). For these three flights, the high-altitude data were above 8 km, with
low-altitude measurements below 2 km (except that 30 May was below 4 km). The 26 May and 30 May cases
were flights in which the DC-8 was probing convective outflow a day after a previous flight focused on
convection; however, the data from the 26 May and 30 May cases used here represent mostly background
UT aerosol rather than the outflow and include no data from the previous day of measurements. The data in
Figure 2 are for when IWC < 0.001 g kg�1.

The average κ and n values (±1 standard deviation) during DC3 were 0.22 ± 0.10 and 1.50 ± 0.02, respectively.
The cumulative vertical profiles of both parameters reveal considerable variability at each altitude relative
to the differences in mean values between different altitudes. When comparing only the mean values at each
altitude, both κ and n tended to be higher in the lowest 1 km versus the next several kilometers higher in
altitude. Interestingly, the mean κ value was highest at the uppermost altitude bin (6.82 ± 1.51 km) for north-
ern Alabama (0.39) as compared to lower altitudes (0.24–0.31). When comparing the three storm regions,
mean values of κ and nwere higher over northern Alabama, which is consistent with higher sulfate mass frac-
tions (MFsulf) and lower organic mass fractions (MFOA) (Figure 2). A more detailed discussion of chemical rela-
tionships with κ and n is in section 4.2.

The average low-/high-altitude values of κ for the three control case flights ranged between 0.20 and 0.23/
0.18 and 0.25, while n varied between 1.50 and 1.52/1.49 and 1.50. The “high altitude � low altitude”
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difference in κ for each case flight
ranged between 0.02 and �0.03,
with p values exceeding 0.10 when
examining the difference in the
low/high means for each case based
on a two-tailed Student’s t test.
Interestingly, the lowest p value was
for 26 May when κ was lower at high
altitude (p = 0.11 versus 0.39–0.70 for
the other cases). In contrast, values of
n were lower at high altitude for all
three control cases, and the differ-
ences in the means for all but one
flight (30 May when p = 0.11) were
statistically significant with a p value
threshold of 0.01. Although the dif-
ferences in n between the inflow
and outflow appear small, even a
small change can still lead to a major
difference in radiative flux calcula-
tions; for example, a 5% change in
values of n can translate to a change
of 26–32% in the aerosol-induced
radiative flux change at the top of
the atmosphere [Redemann et al.,
2000].

3.2. Storm Convection Flights

Results from the three storm case
flights are summarized in Table 2

and further shown in Figure 3 in the case of κ. For one of the three case flights, κ was enhanced for the out-
flow aerosol as compared to the inflow, with the magnitude of this enhancement being 0.03 (16 June:

Figure 2. Vertical profiles of (a) hygroscopicity (κ) and the (b) real part of
the dry particle refractive index (n) at 532 nm for aerosol in cloud-free
air with Dp,dry between 180 and 400 nm. Data are shown for cumulative
DC3 data and for each of the three major areas examined with storms:
northeastern Colorado and southwestern Nebraska (39.2° to 42.0°N,
�105.6° to �101.6°W); southwestern Oklahoma and northern Texas (33.8°
to 36.7°N, �100.1° to �95.9°W); and northern Alabama and southern
Tennessee (33.8° to 35.8°N, �87.7° to �85.6°W). The vertical and horizontal
whiskers represent 1 standard deviation.

Table 1. Summary of Hygroscopicity (κ) and the Real Part of the Dry Particle Refractive Index (n) at 532 nm for Aerosol
With Dp,dry Between 180 and 400 nm During Control Flights in Which the DASH-SP Did Not Sample Inflow and
Outflow Air of Stormsa

21 May 2012 26 May 2012 30 May 2012

Low High Low High Low High

Altitude (km) 1.24 (0.13) 8.77 (0.47) 1.17 (0.26) 10.42 (0.78) 2.97 (0.95) 9.43 (0.05)
κ 0.23 (0.05) 0.25 (0.11) 0.21 (0.06) 0.18 (0.11) 0.20 (0.08) 0.22 (0.07)
n 1.51 (0.01) 1.50 (0.02) 1.52 (0.01) 1.50 (0.02) 1.50 (0.01) 1.49 (0.01)
p value (κ) 0.39 0.11 0.70
p value (n) 0.01 0.00 0.13
f(RH) 1.17 (0.08) 1.89 (0.62) 2.07 (0.12) 1.65 (0.67) NA NA
MFOA 0.63 (0.04) 0.55 (0.12) 0.60 (0.05) 0.76 (0.07) 0.59 (0.05) 0.58 (0.02)
MFsulf 0.23 (0.03) 0.29 (0.09) 0.27 (0.04) 0.13 (0.06) 0.20 (0.02) 0.24 (0.01)
MFnit 0.04 (0.02) 0.06 (0.02) 0.01 (0.00) 0.05 (0.02) 0.09 (0.03) 0.05 (0.01)
MFamm 0.09 (0.01) 0.08 (0.04) 0.10 (0.01) 0.05 (0.01) 0.11 (0.01) 0.09 (0.00)
MFchl 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
MFBC 0.01 (0.00) 0.01 (0.01) 0.01 (0.00) 0.01 (0.01) 0.01 (0.00) 0.02 (0.00)
O:C 0.62 (0.03) 0.90 (0.20) 0.65 (0.09) 0.72 (0.13) 0.67 (0.05) 1.08 (0.13)

aData are shown for low and high altitudes. Also shown are p values when comparing means using a two-tailed
Student’s t test, f(RH) values, chemical mass fractions, and the O:C ratio of organic aerosol. Numbers in parentheses
represent 1 standard deviation. The MF parameters correspond to chemical mass fractions for organic aerosol (OA),
sulfate (sulf), nitrate (nit), ammonium (amm), chloride (chl), and black carbon (BC). NA: not available.
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inflow = 0.21, outflow = 0.24). The outflow data for 16 June coincides with a 2 min sample collected by the
DASH-SP; however, it is noted that there were three subsequent data points between 10.4 and 11.1 km that
were very close to the anvil, the first two of which may have also been influenced by the outflow of this storm
or another storm’s outflow with subsequent aging. This is based on comparing the radar reflectivity image in
Figure 1 with near-IR satellite image at 26:02 on 16 June. The κ values for those three subsequent points,
which coincided with IWC < 0.001 g kg�1, in order of time were 0.49, 0.32, and 0.21. Therefore, including
at least the very next sample would have resulted in an even larger κ enhancement in the outflow relative
to the inflow. The subsequent discussion considers only the value of the first of the four data points that most
confidently was in the outflow.

For 25 May, there was a slight κ reduction in the outflow (inflow = 0.25, outflow = 0.23) with a larger reduction
for 22 June (inflow = 0.27, outflow = 0.21). Of note is that the 22 June storm was characterized by influence of
biomass burning smoke from the High Park Fire with the smoke being entrained into the storm at an altitude
of ~7 km around 00:00 UTC [Barth et al., 2015; Bela et al., 2016]. Owing to the nature of the measurements

conducted where more time was
spent to collect individual DASH-
SP size distributions at high alti-
tude to obtain more statistically
robust κ values, p values associated
with examining the difference in
the means of inflow versus outflow
are only as low as 0.27 for the two
cases when sufficient data points
were available in the outflow to
do this calculation (p = 0.65/0.27
for 25 May/22 June, respectively).
Had the sampling strategy been
to collect more scans with lower
particle concentrations, the p value
could have been more favorable to
show higher significance. We cau-
tion that even though the p values
are high, the conclusion reached
subsequently about how κ is

Table 2. Summary of Hygroscopicity (κ) and the Real Part of the Dry Particle Refractive Index (n) at 532 nm for Aerosol
With Dp,dry Between 180 and 400 nm During Storm Flights in Which the DASH-SP Sampled Inflow and Outflow Aira

25 May 2012 16 June 2012 22 June 2012

Inflow Outflow Inflow Outflow Inflow Outflow

Altitude (km) 1.62 (0.09) 10.58 (0.19) 0.81 (0.05) 11.26 1.91 (0.00) 10.08 (0.00)
κ 0.25 (0.05) 0.23 (0.05) 0.21 (0.04) 0.24 0.27 (0.07) 0.21 (0.11)
n 1.50 (0.01) 1.51 (0.03) 1.51 (0.01) 1.54 1.50 (0.01) 1.49 (0.02)
p value (κ) 0.65 NA 0.27
p value (n) 0.66 NA 0.24
f(RH) 1.84 (0.04) 1.17 (0.15) NA NA 1.47 (0.09) 0.96 (0.16)
MFOA 0.56 (0.01) 0.81 (0.05) 0.60 (0.03) 0.77 0.60 (0.02) 0.74 (0.09)
MFsulf 0.33 (0.01) 0.11 (0.03) 0.27 (0.04) 0.10 0.28 (0.01) 0.10 (0.06)
MFnit 0.01 (0.00) 0.04 (0.00) 0.02 (0.01) 0.07 0.02 (0.01) 0.09 (0.02)
MFamm 0.10 (0.00) 0.04 (0.01) 0.09 (0.01) 0.03 0.10 (0.00) 0.06 (0.01)
MFchl 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 0.00 (0.00) 0.01 (0.00)
MFBC 0.01 (0.00) 0.01 (NA) 0.01 (0.00) 0.02 NA NA
O:C 0.70 (0.02) 0.71 (0.07) 0.60 (0.04) 0.87 0.65 (0.03) 0.49 (0.03)

aAlso shown are p values when comparing means using a two-tailed Student’s t test, f(RH) data, chemical mass
fractions, and the O:C ratio of organic aerosol. Numbers in parentheses represent 1 standard deviation. BC data are
not used in certain outflows owing to HD-SP2 cloud filters applied.

Figure 3. Vertically resolved κ values for the three storm case flights corre-
sponding to the following: (red) cloud-free average values nearby the
storm; (blue) measured inflow and outflow values (whiskers = 1 standard
deviation); (black) predicted values in the storm obtained using an altitude-
dependent entrainment model.
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higher than what an altitude-dependent entrainment model predicts for outflow aerosol particles is robust
for all three storm cases.

Differences in n between inflow and outflow conflicted between the three cases. More specifically, n was
lower in the outflow of the 22 June case as compared to inflow (1.49 versus 1.50), unlike for 25 May
(inflow = 1.50; outflow = 1.51) and 16 June (inflow = 1.51; outflow = 1.54). A notable result, therefore, is that
in the absence of storm convection, n is reduced at high altitudes as compared to low altitudes with high sta-
tistical significance as compared to cases of storm convection.

4. Discussion
4.1. Entrainment Modeling

To help interpret the measurement data from the three storm flights, it is important to consider the impact
of entrainment of cloud-free air into each of the storms examined. A summary of the altitude-dependent
entrainment model used for our calculations is described in detail elsewhere [Barth et al., 2016; Fried
et al., 2016] and is briefly summarized here. Cloud-free profiles of n-butane, i-butane, n-pentane, and
i-pentane were used to calculate entrainment rate while making sure that data with biomass burning and
stratospheric influence were omitted. Biomass burning smoke influences were identified based on carbon
monoxide (CO) mixing ratios and aircraft location relative to the smoke. Stratospheric air influences were
identified based on when the ozone to CO ratio exceeded 1.25, similar to the method of Hudman et al.
[2007]. It is cautioned though that a finite possibility exists of there still being data points with stratospheric
influence due to mixing of air promoted by thunderstorms [e.g., Schroeder et al., 2014]. The model transports
a parcel of air from just below cloud base to the anvil outflow measurements. Entrainment rate is calculated
using mixing ratios of the various volatile organic compounds (VOCs) listed above in 1 km increments over
the course of the parcel trajectory. Sounding measurements of κ in the clear air adjacent to the three storms
of focus were used for the entrainment calculations and are visually shown in Figure 3 relative to the
model output.

Themodel results reveal that for all three cases, κ is predicted to be lower in the outflow regions as compared
to both the measured inflow and outflow values (Figure 3). For 25 May, the outflow κ is predicted to be 0.191
as compared to the measured value of 0.23. For 16 June, which exhibited an enhancement in measured κ in
the outflow (0.24 versus 0.21 in inflow), the predicted value in the outflow is 0.130. The predicted outflow κ
value for 22 June was 0.184, in contrast to the measured value of 0.21. A key result of this study is that the
mean κ values measured in the outflows of the three cases exceeded the predicted value. This is due to some
process(es) that increased κ values during vertical aerosol transport that offset reductions owing to entrain-
ment of cloud-free air. A plausible physical explanation is that there may be extensive aqueous-phase
chemistry (i.e., secondary formation of hygroscopic aerosol species, such as sulfate) that acts to enhance
the hygroscopicity of the outflow aerosol to the extent that it can offset the reduction owing to entrainment
and other effects such as wet scavenging.

With regard to wet scavenging, it is worth noting that previous work investigated aerosol scavenging for a
different storm case during DC3 (29–30 May 2012) [Yang et al., 2015]. They reported high scavenging effi-

ciencies (1� Anvil Concentration
Anvil Concentrationno scavenging

) for both aerosol number (~0.68 for 0.039 ≤ Dp ≤ 2.5 μm) and submic-

rometer aerosol mass (~0.81), and with higher scavenging efficiencies for larger particles (0.156–2.5 μm:
0.84) versus smaller particles (0.039–0.156 μm: 0.64). They observed little chemical selectivity in scavenging
between ammonium, sulfate, and organics (0.80–0.84); however, nitrate exhibited reduced scavenging
efficiency (0.57) compared to the other species. In the next section we extend the discussion related to
aerosol composition.

4.2. Aerosol Composition Results

A primary driver of both κ and n is aerosol composition, and thus, it is imperative to try to explain changes in
both parameters between low and high altitudes with available data from the HR-AMS and HD-SP2 instru-
ments. It is cautioned that the DASH-SP data are size-resolved unlike the chemical data. It is generally
accepted that increasing (decreasing) organic (inorganic) mass fraction (MFOA) coincides with suppressed
hygroscopicity [e.g., Petters and Kreidenweis, 2007; Zieger et al., 2015], as has been demonstrated with
airborne measurements over the continental United States [Brock et al., 2016; Shingler et al., 2016a].
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Furthermore, airborne measurements over the United States have shown that the κ associated with the
organic fraction (κOA) increases as a function of the atomic oxygen-to-carbon ratio (O:C) above values of
0.40 [Shingler et al., 2016a]. Thus, it is of interest to see howwell κ and n between different altitudes correlates
with MFOA and the O:C ratio of organic aerosol.
4.2.1. Composition Versus Hygroscopicity
For the three control flights, both the low- and high-altitude aerosol were dominated by organics with aver-
age MFOA values ranging from 0.59 to 0.63 and 0.55 to 0.76, respectively (Table 1). Sulfate was the next most
abundant component with its mass fraction (MFsulf) ranging from 0.13 to 0.29. The most significant change in
κ (albeit only by 0.03) was for 26 May when κ was lower at high altitude. MFOA was larger at high altitude
(high = 0.76; low = 0.60) without a large difference in the O:C ratio (high = 0.72; low = 0.65). Expectedly,
MFsulf was lower at high altitude (high = 0.13; low = 0.27) to compensate for a higher MFOA. Data from 21
May reveal a lower MFOA at high altitudes (0.55 versus 0.63 at low altitude) with a higher O:C ratio (0.90 versus
0.62 at low altitude), which is consistent with a higher κ. The 30 May MFOA values are nearly identical
(0.58–0.59) between low and high altitudes, but the MFsulf and O:C ratios were higher aloft (0.24 versus
0.20 and 1.08 versus 0.67, respectively), coinciding with a higher κ.

Similar to the control flights, organics dominated aerosol composition in the storm case flights with MFOA
values ranging from 0.56 to 0.60 in inflows and 0.74 to 0.81 in outflows (Table 2). Sulfate was the next most
abundant component (MFsulf: 0.10–0.33). MFOA was higher in the outflows for all three flights by between
0.14 and 0.25, while MFsulf was lower in outflows by between 0.17 and 0.22. While the increase (decrease)
in MFOA (MFsulf) in the outflow is consistent with κ being lower for at least two of the flights (25 May and
22 June), the κ enhancement in the outflow of 16 June cannot be explained by MFOA and MFsulf, which
increased and decreased, respectively, in the outflow. Interestingly, the outflow of 16 June exhibited an
enhancement of O:C by 0.27 in the outflow, which can help explain at least some of the enhancement in κ.
A comparison to results of Shingler et al. [2016a, Figures 10 and 11] of how hygroscopicity varies as a
function of O:C ratio over the continental United States reveals that the κ associated with the organic fraction
(i.e., κOA) can increase by between 0.02 and 0.03 for the O:C increase observed on 16 June, but it would be
offset in the other direction to a greater extent by the increase in MFOA.

Figure 4a compares κ with both MFOA and MFsulf for the six flights discussed above. When examining all six
flights worth of data together, the mass fraction with the strongest relationship with κ was that of sulfate
(r = 0.42), followed in order by MFnit (r = �0.32), MFOA (r = �0.29), and the O:C ratio (r = �0.19). Because of
how the 16 June data do not follow the trend of other flights, the inverse relationship between κ and
MFOA is stronger for control flights (r =�0.76) versus storm flights (r =�0.35), while the relationship between
κ and MFsulf is also stronger for control flights (r = 0.86 versus 0.44). Aside from the six case flights, when
examining the cumulative data from Figure 2 for the three storm regions, κ exhibited similar correlation
values with both MFOA (r = �0.44) and MFsulf (r = 0.44), albeit opposite in sign, with the next strongest corre-
lation being with the O:C ratio (r = 0.35).

The 16 June flight is the most challenging case to explain as it is unlikely that an increase of κ by 0.03 can be
explained by an increase in the O:C ratio while MForg also increased. As noted earlier, if the subsequent DASH-
SP data point (κ = 0.49) after the main outflow point shown in Table 2 was included, the κ enhancement
would have been even larger without any difference in the chemical results as the mass fractions (and O:C
ratio) for that next point were nearly identical to the previous point. One potential explanation for the dis-
agreement between the chemical and hygroscopicity data for this specific case could be related to the
size-resolved nature of the DASH-SP measurements unlike the chemical data used, which would mean that
the intercomparison is not fair.

As an attempt to address this issue, f(RH) data for bulk aerosol were analyzed for flights in which such data
were available (Tables 1 and 2). Similar to size-resolved κ data, lower values of f(RH) coincide with higher
(lower) MFOA (MFsulf) values. For an extended discussion of the counter-intuitive f(RH) values below unity
on 22 June, the reader is referred to Shingler et al. [2016b] where it is explained that such data are not uncom-
mon aloft when sampling biomass burning plumes. When considering the four flights in Tables 1 and 2 when
f(RH) data were available, f(RH) was best correlated with MFsulf (r = 0.69), followed by MFOA (r =�0.63) and O:
C (r = 0.60). Unfortunately, f(RH) data are not available for the critical 16 June case, which is the main
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discrepancy between the DASH-SP and composition data; thus, this potential explanation (size-resolved
versus bulk data) cannot entirely be ruled out. It is also possible that there may have been influence from
species not detectable by the HR-AMS or that MForg is not the most suitable chemical proxy to describe
the aerosol hygroscopic behavior. For instance, what could have been influential for the 16 June outflow
was the relative amounts of different inorganic species coupled to the increase in the O:C ratio and also
nonideal interactions between different aerosol constituents.
4.2.2. Composition Versus Refractive Index
In contrast to the hygroscopicity data, explaining shifts in n values with the composition data is much more
challenging for the six case flights summarized in Tables 1 and 2. For instance, there is a consistent reduction
in n at high altitudes versus low altitudes in the three control cases, but there was no consistent feature in the
chemical data that was distinctly different at high altitudes (Table 1). Similar to the control flights, there is no
chemical parameter that matched the changes observed in n across all three storm flights (Table 2). The rela-
tionship between n and almost every chemical parameter (except MFnit) was stronger (albeit still weak and
sometimes opposite in sign) in the storm case flights as compared to control flights. For example, the
correlation between n and various chemical parameters was as follows for storm/control case flights:
MFsulf =�0.34/0.26, MFamm =�0.60/0.25; MFOA = 0.38/0.03, O:C = 0.87/�0.75, MFnit = 0.15/�0.67. When data
from the six case flights were combined, n was best correlated with MFamm (r = �0.39) followed by MFOA
(r = 0.32). When examining cumulative data from Figure 2 for the three storm regions, n exhibited its stron-
gest correlation with MFnit (r = �0.55) and MFsulf (r = 0.39), while one of the weakest relationships was with
MFOA (r = �0.07). The lack of consistency between composition and n data may be due to different factors
that govern n values relative to hygroscopicity, which will be the subject of forthcoming work.

While the DASH-SP cannot quantify the imaginary component of particle refractive index (RI), it is worth
noting that the mean single scattering albedo (SSA at 550 nm), as derived from the LARGE package, was
between 0.94 and 0.96 for the inflow and outflow of each of the storm cases examined. Values during DC3
were typically in the range of 0.91–0.99, which is representative of more aged particles without very strong
absorptive properties as compared to fresh wildfire plumes [Corr et al., 2012, and references therein].

Figure 4. Comparison of κ and n versus MFOA using the high- and low-altitude data from the three control flights in
Table 1, inflow/outflow data from the three storm flights in Table 2, and the data from Figure 2 for the three general
storm regions probed during DC3. Markers are color coded by the sulfate mass fraction, and sizes of the markers from the
six case flights in Tables 1 and 2 are proportional to altitude to differentiate between low- and high-altitude data. Best fit
lines are shown for the two sets of points with correlation coefficients (r) reported.
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5. Conclusions

Airborne DC-8 data collected during the 2012 DC3 campaign are used in this work to examine the impact of
storm convection on subsaturated aerosol hygroscopicity (κ) and the real part of dry aerosol refractive index
(n). Three case studies of storm convection are compared with each other and with other flights with high-
and low-altitude data without storm convection sampled. The main results are as follows in order of the
objectives outlined in section 1:

1. The average κ and n values during DC3 were 0.22 ± 0.10 and 1.50 ± 0.02, respectively. When comparing
only the mean values at each altitude, both κ and n tended to be higher in the lowest 1 km versus the next
several kilometers higher in altitude. When comparing the three storm regions, κ and n were higher over
northern Alabama, which is consistent with higher MFsulf and lower MFOA.

2. Aerosol hygroscopicity in the storm outflow of one case exceeded that of the inflow value (κ: 0.21 to 0.24),
while the other two cases exhibited a reduction. While the value of n was higher in the outflow of two of
the three storms examined, the values were always lower >8 km on control flights relative to <4 km.
Differences in n were more statistically significant on the control flights.

3. For the three storm cases, the mean κ value measured in the outflow exceeds the predicted value based
on an altitude-dependent entrainment model that treats mixing of cloud-free air into the storms. This is
suggestive of a process such as aqueous-phase chemistry that increases hygroscopicity of convected
aerosol in storms even if the outflow κ value is lower in the outflow relative to the inflow.

4. Chemical measurements show that suppressed values of MForg and higher values of MFsulf and the O:C
ratio of organic aerosol coincided with higher κ (and f(RH)) values, unlike n, when comparing the low-
and high-altitude periods during DC3 flights. Differences in n cannot be explained with the available
chemical data and requires further research to determine what factors govern its values.

To date there have been limited attempts to quantify how deep convection alters the physicochemical
properties of aerosol particles. Since aerosol effects on climate depend on both their radiative properties
and vertical distribution, this study demonstrates that deep convection is a critical process to understand
as it redistributes particles and changes how they interact with water vapor and solar radiation.
Measurements showing that n is reduced in the UT as compared to the PBL on days when storm convec-
tion was not targeted is also of critical importance with regard to aerosol radiative forcing calculations, in
addition to the use and interpretation of columnar aerosol remote sensing data. This study motivates
additional research to investigate both the factors governing n in addition to the relative importance
of different in-cloud processes in enhancing outflow aerosol hygroscopicity beyond what an altitude-
dependent entrainment model predicts.
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